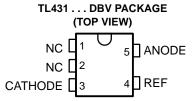
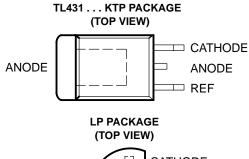
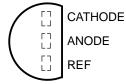

- Equivalent Full-Range Temperature Coefficient . . . 30 ppm/°C
- 0.2-Ω Typical Output Impedance
- Sink-Current Capability . . . 1 mA to 100 mA
- Low Output Noise
- Adjustable Output Voltage . . . V_{ref} to 36 V
- Available in a Wide Range of High-Density Packages


description

The TL431 and TL431A are three-terminal adjustable shunt regulators with specified thermal stability over applicable automotive, commercial, and military temperature ranges. The output voltage can be set to any value between V_{ref} (approximately 2.5 V) and 36 V, with two external resistors (see Figure 17). These devices have a typical output impedance of 0.2 Ω . Active output circuitry provides a very sharp turn-on characteristic, making these devices excellent replacements for Zener diodes in many applications, such as onboard regulation, adjustable power supplies, and switching power supplies.

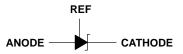

The TL431C and TL431AC are characterized for operation from 0°C to 70°C, and the TL431I and TL431AI are characterized for operation from –40°C to 85°C.



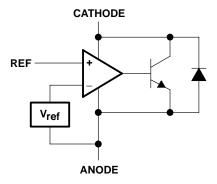
NC - No internal connection

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

TL431, TL431A ADJUSTABLE PRECISION SHUNT REGULATORS

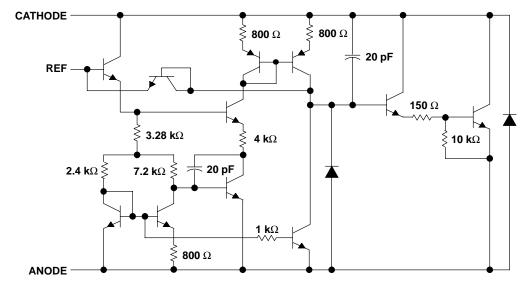

SLVS005N - JULY 1978 - REVISED MARCH 2002

AVAILABLE OPTIONS


				PACKAGE			
TA	SMALL OUTLINE (D, PS)	SOT-23 (DBV)	PLASTIC FLANGE MOUNT (KTP)	TO-226AA (LP)	PLASTIC DIP (P)	PLASTIC SHRINK SMALL OUTLINE (PW)	SOT-89 (PK)
0°C to 70°C	TL431CD TL431CPSR TL431ACD TL431ACPSR	TL431CDBVR	TL431CKTPR	TL431CLP TL431ACLP	TL431CP TL431ACP	TL431CPWR TL431ACPWR	TL431CPKR
-40°C to 85°C	TL431ID TL431AID	TL431IDBVR		TL431ILP TL431AILP	TL431IP TL431AIP		TL431IPKR

The D package is available taped and reeled. Add the suffix R to the device type (e.g., TL431CDR). The DBV, KTP, PK, PS, and PW packages are only available taped and reeled. The LP package also is available in ammo pack. Add the suffix M to the device type (e.g., TL431CLPM).

symbol



functional block diagram

equivalent schematic†

† All component values are nominal.

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)‡

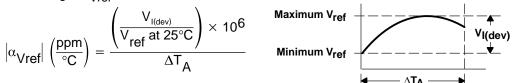
Cathode voltage, V _{KA} (see Note 1)	37 V
Continuous cathode current range, I _{KA}	00 mA to 150 mA
Reference input current range	-50 μA to 10 mA
Package thermal impedance, θ _{JA} (see Notes 2 and 4): DBV package	•
(see Notes 2 and 3): KTP package	28°C/W
(see Notes 2 and 4): LP package	156°C/W
(see Notes 2 and 4): P package	85°C/W
(see Notes 2 and 4): PK package	52°C/W
(see Notes 2 and 4): PS package	95°C/W
(see Notes 2 and 4): PW package	149°C/W
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds	260°C
Storage temperature range, T _{stq}	

[‡] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. Voltage values are with respect to the ANODE terminal unless otherwise noted.
 - 2. Maximum power dissipation is a function of $T_J(max)$, θ_{JA} , and T_A . The maximum allowable power dissipation at any allowable ambient temperature is $P_D = (T_J(max) T_A)/\theta_{JA}$. Operating at the absolute maximum T_J of 150°C can affect reliability.
 - 3. The package thermal impedance is calculated in accordance with JESD 51-5.
 - 4. The package thermal impedance is calculated in accordance with JESD 51-7.

recommended operating conditions

			MIN	MAX	UNIT
VKA	Cathode voltage		V _{ref}	36	V
IKA	Cathode current		1	100	mA
Τ.	Operating free air temperature range	TL431C, TL431AC	0	70	°C
Тд	Operating free-air temperature range	TL431I, TL431AI	-40	85	C



electrical characteristics over recommended operating conditions, T_A = 25°C (unless otherwise noted)

PARAMETER		TEST	TEST C	CONDITIONS		TL431C		UNIT
	PARAMETER	CIRCUIT	TEST CONDITIONS		MIN	TYP	MAX	UNII
V _{ref}	Reference voltage	2	$V_{KA} = V_{ref}$	I _{KA} = 10 mA	2440	2495	2550	mV
V _{I(dev)}	Deviation of reference voltage over full temperature range (see Figure 1)	2	$V_{KA} = V_{ref}$, $I_{KA} = T_A = 0$ °C to 70°C	10 mA,		4	25	mV
$\Delta V_{ m ref}$	Ratio of change in reference voltage	3	I _{KA} = 10 mA	$\Delta V_{KA} = 10 V - V_{ref}$		-1.4	-2.7	mV
$\overline{\Delta V_{KA}}$	to the change in cathode voltage	,	IKA – IOTIIA	$\Delta V_{KA} = 36 \text{ V} - 10 \text{ V}$		-1	-2	$\frac{mV}{V}$
I _{ref}	Reference current	3	I _{KA} = 10 mA, R1 =	= 10 kΩ, R2 = ∞		2	4	μΑ
I _{I(dev)}	Deviation of reference current over full temperature range (see Figure 1)	3	I _{KA} = 10 mA, R1 = T _A = 0°C to 70°C	= 10 kΩ, R2 = ∞,		0.4	1.2	μА
I _{min}	Minimum cathode current for regulation	2	V _K A = V _{ref}			0.4	1	mA
l _{off}	Off-state cathode current	4	$V_{KA} = 36 V$,	V _{ref} = 0		0.1	1	μΑ
z _{KA}	Dynamic impedance (see Figure 1)	1	$I_{KA} = 1 \text{ mA to } 100$ $f \le 1 \text{ kHz}$	mA, $V_{KA} = V_{ref}$,		0.2	0.5	Ω

The deviation parameters $V_{ref(dev)}$ and $I_{ref(dev)}$ are defined as the differences between the maximum and minimum values obtained over the recommended temperature range. The average full-range temperature coefficient of the reference voltage, α_{Vref} , is defined as:

$$\left| \alpha_{Vref} \right| \left(\frac{ppm}{^{\circ}C} \right) = \frac{\left(\frac{V_{\text{I(dev)}}}{V_{ref} \text{ at } 25^{\circ}C} \right) \times 10^{6}}{\Delta T_{A}}$$

where:

 ΔT_A is the recommended operating free-air temperature range of the device.

 α_{Vref} can be positive or negative, depending on whether minimum V_{ref} or maximum V_{ref} , respectively, occurs at the lower temperature.

Example: maximum $V_{ref} = 2496$ mV at 30°C, minimum $V_{ref} = 2492$ mV at 0°C, $V_{ref} = 2495$ mV at 25°C, $\Delta T_{\Delta} = 70^{\circ}C$ for TL431C

$$\left|\alpha_{\text{Vref}}\right| = \frac{\left(\frac{4 \text{ mV}}{2495 \text{ mV}}\right) \times 10^6}{70^{\circ}\text{C}} \approx 23 \text{ ppm/}^{\circ}\text{C}$$

Because minimum V_{ref} occurs at the lower temperature, the coefficient is positive.

Calculating Dynamic Impedance

Calculating Dynamic impedance The dynamic impedance is defined as: $\left|z_{KA}\right| = \frac{\Delta V_{KA}}{\Delta I_{KA}}$

When the device is operating with two external resistors (see Figure 3), the total dynamic impedance of the circuit is given by:

$$|z'| = \frac{\Delta V}{\Delta I} \approx |z_{KA}| \left(1 + \frac{R1}{R2}\right)$$

Figure 1. Calculating Deviation Parameters and Dynamic Impedance

TL431, TL431A ADJUSTABLE PRECISION SHUNT REGULATORS

SLVS005N - JULY 1978 - REVISED MARCH 2002

electrical characteristics over recommended operating conditions, T_A = 25°C (unless otherwise noted)

	PARAMETER		TEST C	ONDITIONS		TL431I		UNIT
	PARAMETER	CIRCUIT	TEST CONDITIONS		MIN	TYP	MAX	UNIT
V _{ref}	Reference voltage	2	$V_{KA} = V_{ref}$	I _{KA} = 10 mA	2440	2495	2550	mV
VI(dev)	Deviation of reference voltage over full temperature range (see Figure 1)	2	$V_{KA} = V_{ref}$, $I_{KA} = T_A = -40$ °C to 85°C			5	50	mV
ΔV_{ref}	Ratio of change in reference voltage	3	l = 10 mA	$\Delta V_{KA} = 10 V - V_{ref}$		-1.4	-2.7	mV
ΔV_{KA}	to the change in cathode voltage	3	I _{KA} = 10 mA	$\Delta V_{KA} = 36 \text{ V} - 10 \text{ V}$		-1	-2	$\frac{mV}{V}$
I _{ref}	Reference current	3	I _{KA} = 10 mA, R1 =	= 10 kΩ, R2 = ∞		2	4	μΑ
I _{I(dev)}	Deviation of reference current over full temperature range (see Figure 1)	3	$I_{KA} = 10 \text{ mA}, R1 = T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$			0.8	2.5	μΑ
I _{min}	Minimum cathode current for regulation	2	V _{KA} = V _{ref}			0.4	1	mA
l _{off}	Off-state cathode current	4	$V_{KA} = 36 V$,	V _{ref} = 0		0.1	1	μΑ
Izkal	Dynamic impedance (see Figure 1)	2	$I_{KA} = 1 \text{ mA to } 100$ $f \le 1 \text{ kHz}$	mA , $V_{KA} = V_{ref}$,		0.2	0.5	Ω

TL431, TL431A ADJUSTABLE PRECISION SHUNT REGULATORS

SLVS005N - JULY 1978 - REVISED MARCH 2002

electrical characteristics over recommended operating conditions, $T_A = 25^{\circ}C$ (unless otherwise noted)

PARAMETER		TEST	TEST C	ONDITIONS	Т	L431AC	:	UNIT
		CIRCUIT	TEST C	MIN	TYP	MAX	UNIT	
V _{ref}	Reference voltage	2	$V_{KA} = V_{ref}$	$I_{KA} = 10 \text{ mA}$	2470	2495	2520	mV
VI(dev)	Deviation of reference voltage over full temperature range (see Figure 1)	2	V _{KA} = V _{ref} , I _{KA} = T _A = 0°C to 70°C	10 mA,		4	25	mV
$\Delta V_{ m ref}$	Ratio of change in reference voltage	3	lica = 10 mΔ	$\Delta V_{KA} = 10 V - V_{ref}$		-1.4	-2.7	mV
ΔV_{KA}	to the change in cathode voltage	3	I _{KA} = 10 mA	$\Delta V_{KA} = 36 \text{ V} - 10 \text{ V}$		-1	-2	$\frac{\text{mV}}{\text{V}}$
I _{ref}	Reference current	3	I _{KA} = 10 mA, R1 =	= 10 kΩ, R2 = ∞		2	4	μΑ
I _{I(dev)}	Deviation of reference current over full temperature range (see Figure 1)	3	I _{KA} = 10 mA, R1 = T _A = 0°C to 70°C	= 10 kΩ, R2 = ∞,		0.8	1.2	μΑ
I _{min}	Minimum cathode current for regulation	2	V _{KA} = V _{ref}			0.4	0.6	mA
l _{off}	Off-state cathode current	4	V _{KA} = 36 V,	V _{ref} = 0		0.1	0.5	μΑ
IzKAI	Dynamic impedance (see Figure 1)	1	$I_{KA} = 1 \text{ mA to } 100$ $f \le 1 \text{ kHz}$	mA , $V_{KA} = V_{ref}$,		0.2	0.5	Ω

electrical characteristics over recommended operating conditions, T_A = 25°C (unless otherwise noted)

PARAMETER		TEST	TEST C	CONDITIONS	7	ΓL431AI		UNIT
	PARAMETER	CIRCUIT	TEST CONDITIONS		MIN	TYP	MAX	UNIT
V _{ref}	Reference voltage	2	$V_{KA} = V_{ref}$	$I_{KA} = 10 \text{ mA}$	2470	2495	2520	mV
V _{I(dev)}	Deviation of reference voltage over full temperature range (see Figure 1)	2	$V_{KA} = V_{ref}$, $I_{KA} = T_A = -40$ °C to 85 °C	10 mA, C		5	50	mV
$\Delta V_{ m ref}$	Ratio of change in reference voltage	3	h.c 10 mA	$\Delta V_{KA} = 10 \text{ V} - V_{ref}$		-1.4	-2.7	<u>mV</u>
$\frac{\overline{\Delta V_{KA}}}{\overline{\Delta V_{KA}}}$	to the change in cathode voltage	3	$I_{KA} = 10 \text{ mA}$	$\Delta V_{KA} = 36 \text{ V} - 10 \text{ V}$		-1	-2	V
I _{ref}	Reference current	3	I _{KA} = 10 mA, R1 =	= 10 kΩ, R2 = ∞		2	4	μΑ
I _{I(dev)}	Deviation of reference current over full temperature range (see Figure 1)	3	$I_{KA} = 10 \text{ mA}, R1 = T_A = -40^{\circ}\text{C to } 85^{\circ}\text{C}$	= 10 kΩ, R2 = ∞, C		0.8	2.5	μΑ
I _{min}	Minimum cathode current for regulation	2	V _{KA} = V _{ref}			0.4	0.7	mA
l _{off}	Off-state cathode current	4	$V_{KA} = 36 V$,	V _{ref} = 0		0.1	0.5	μΑ
z _{KA}	Dynamic impedance (see Figure 1)	2	$I_{KA} = 1 \text{ mA to } 100$ $f \le 1 \text{ kHz}$	$_{\text{mA, V}_{\text{KA}}} = V_{\text{ref}},$		0.2	0.5	Ω

PARAMETER MEASUREMENT INFORMATION

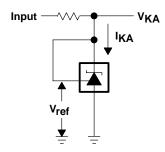


Figure 2. Test Circuit for $V_{KA} = V_{ref}$

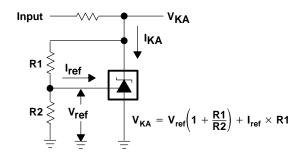


Figure 3. Test Circuit for $V_{KA} > V_{ref}$

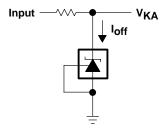
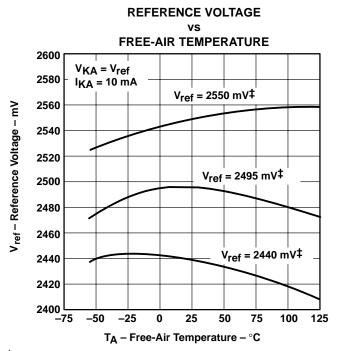


Figure 4. Test Circuit for Ioff


Table 1. Graphs

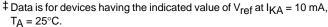

	FIGURE
Reference input voltage vs Free-air temperature	5
Reference input current vs Free-air temperature	6
Cathode current vs Cathode voltage	7, 8
Off-state cathode current vs Free-air temperature	9
Ratio of delta reference voltage to change in cathode voltage vs Free-air temperature	10
Equivalent input noise voltage vs Frequency	11
Equivalent input noise voltage over a 10-second period	12
Small-signal voltage amplification vs Frequency	13
Reference impedance vs Frequency	14
Pulse response	15
Stability boundary conditions	16

Table 2. Application Circuits

	FIGURE
Shunt regulator	17
Single-supply comparator with temperature-compensated threshold	18
Precision high-current series regulator	19
Output control of a three-terminal fixed regulator	20
High-current shunt regulator	21
Crowbar circuit	22
Precision 5-V 1.5-A regulator	23
Efficient 5-V precision regulator	24
PWM converter with reference	25
Voltage monitor	26
Delay timer	27
Precision current limiter	28
Precision constant-current sink	29

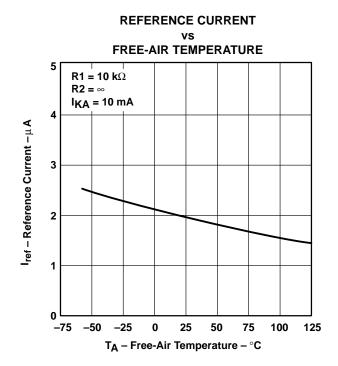
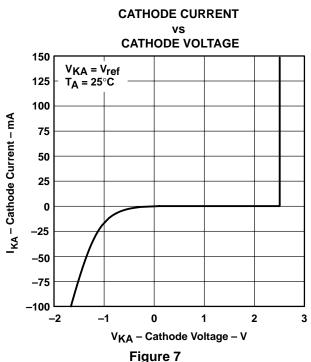
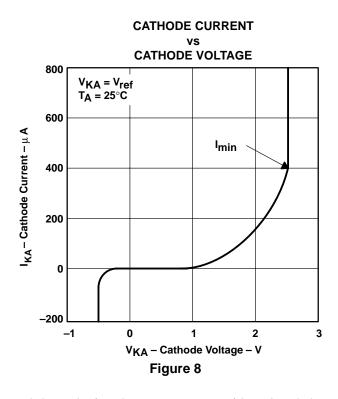
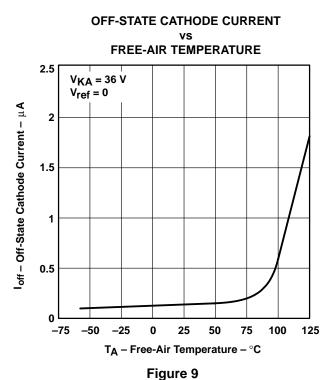




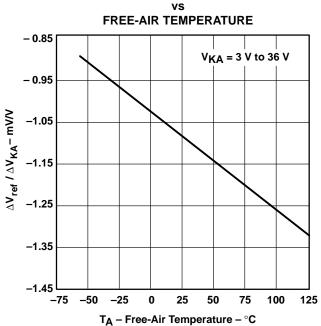
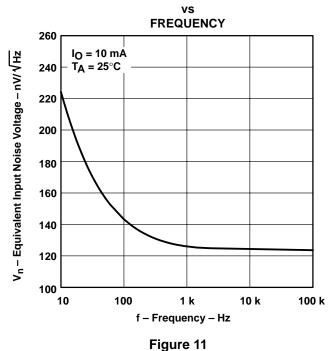
Figure 6

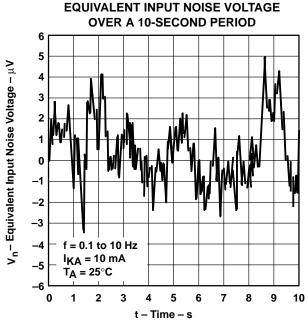


[†] Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

TYPICAL CHARACTERISTICS[†]

RATIO OF DELTA REFERENCE VOLTAGE TO DELTA CATHODE VOLTAGE


Figure 10

EQUIVALENT INPUT NOISE VOLTAGE

[†] Data at high and low temperatures are applicable only within the recommended operating free-air temperature ranges of the various devices.

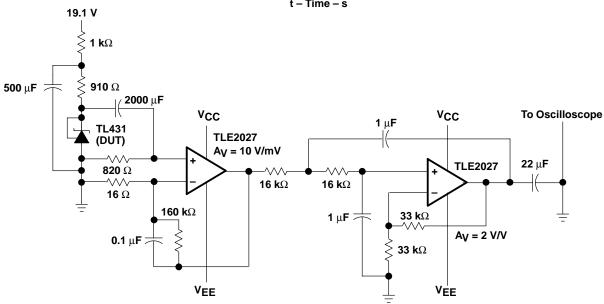
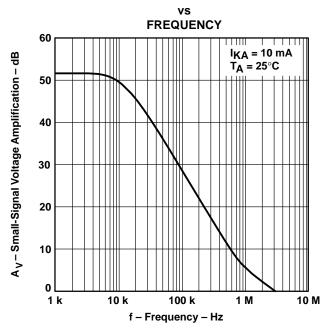
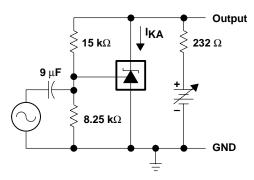
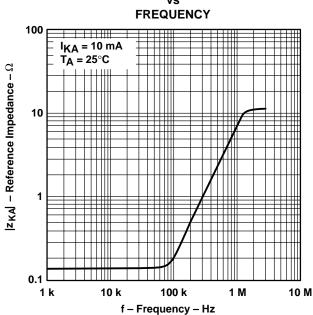
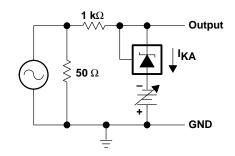




Figure 12. Test Circuit for Equivalent Input Noise Voltage

SMALL-SIGNAL VOLTAGE AMPLIFICATION

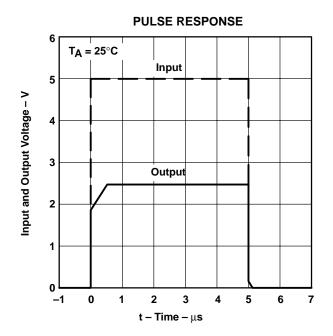


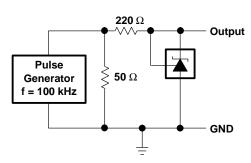


TEST CIRCUIT FOR VOLTAGE AMPLIFICATION

Figure 13

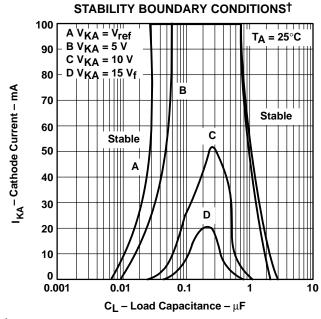
REFERENCE IMPEDANCE vs

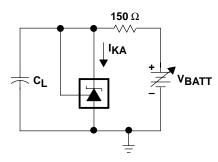




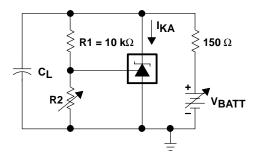
TEST CIRCUIT FOR REFERENCE IMPEDANCE

Figure 14

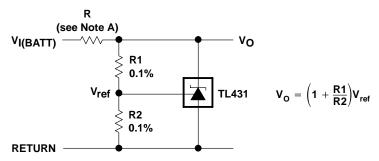




TEST CIRCUIT FOR PULSE RESPONSE


Figure 15

 $[\]dagger$ The areas under the curves represent conditions that may cause the device to oscillate. For curves B, C, and D, R2 and V+ were adjusted to establish the initial V_{KA} and I_{KA} conditions with C_L = 0. V_{BATT} and C_L then were adjusted to determine the ranges of stability.



TEST CIRCUIT FOR CURVE A

TEST CIRCUIT FOR CURVES B, C, AND D

Figure 16

NOTE A: R should provide cathode current ≥1 mA to the TL431 at minimum V_{I(BATT)}.

Figure 17. Shunt Regulator

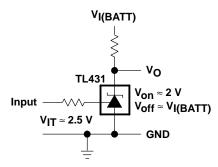
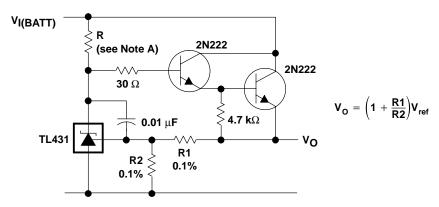



Figure 18. Single-Supply Comparator With Temperature-Compensated Threshold

NOTE A: R should provide cathode current ≥1 mA to the TL431 at minimum V_{I(BATT)}.

Figure 19. Precision High-Current Series Regulator

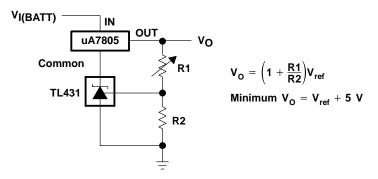


Figure 20. Output Control of a Three-Terminal Fixed Regulator

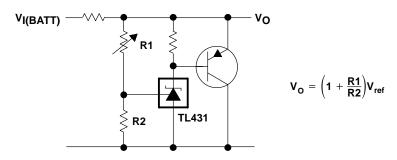
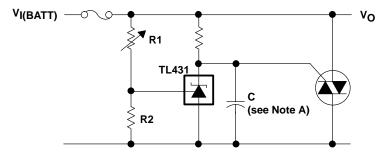



Figure 21. High-Current Shunt Regulator

NOTE A: Refer to the stability boundary conditions in Figure 16 to determine allowable values for C.

Figure 22. Crowbar Circuit

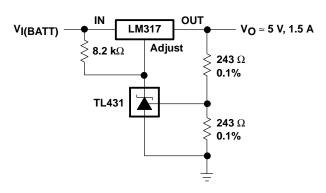
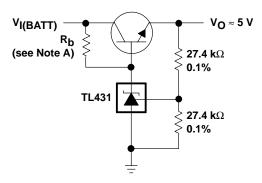



Figure 23. Precision 5-V 1.5-A Regulator

NOTE A: R_b should provide cathode current ≥ 1 mA to the TL431.

Figure 24. Efficient 5-V Precision Regulator

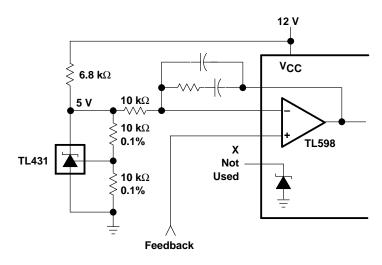



Figure 25. PWM Converter With Reference

NOTE A: R3 and R4 are selected to provide the desired LED intensity and cathode current ≥1 mA to the TL431 at the available V_{I(BATT)}.

Figure 26. Voltage Monitor

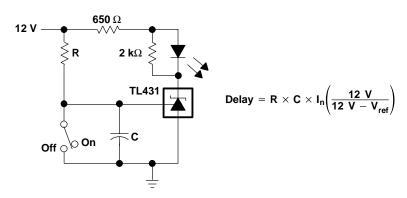


Figure 27. Delay Timer

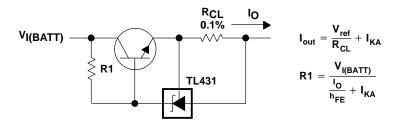


Figure 28. Precision Current Limiter

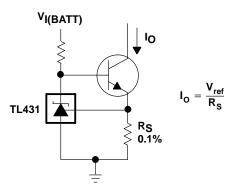


Figure 29. Precision Constant-Current Sink

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third—party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Mailing Address:

Texas Instruments Post Office Box 655303 Dallas, Texas 75265

Copyright © 2002, Texas Instruments Incorporated